2.1: Functions and Their Graphs

ADP Content Standards:
- **P1.a:** Determine key characteristics of quadratic functions and their graphs.

CCSS for High School Mathematics:
- **F.IF.1:** Understand the concept of a function and use function notation
 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).
- **F.IF.7:** Analyze functions using different representations
 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

Objective:
- To identify and graph functions.

Relations

A **relation** is a mapping, or pairing of input values with output values.

Domain
- Input values
- Independent variable
- Usually \(x \)-coordinates

Range
- Output values
- Dependent variable
- Usually \(y \) or \(f(x) \) - coordinates

Ordered Pairs
- \((x, y)\)
- \((-3, 4)\)
- \((3, -1)\)
- \((4, -1)\)
- \((4, 3)\)

Mapping Diagram

Table of Values

Graph

Arrows show how to pair each input with an output.
Example 1: Finding Domain and Range
What are the domain and range of each relation?

a.) \{ (5, 9), (4, 11), (3, 13), (2, 15) \}

b.) \{ (-3, 14), (0, 7), (2, 0), (9, -18) \}

Identifying Functions

A function is a relation in which each element of the domain corresponds with exactly one element of the range.

Example 2: Identifying Functions
Is the relation a function?

a.) Domain | Range
-3 | -2
0 | 1
4 | 7

b.) \{ (4, -1), (8, 6), (6, 6), (4, 1) \}
Vertical Line Test

Vertical Line Test for Functions

A relation is a function if and only if no vertical line intersects the graph of the relation at more than one point.

Example 3: Using the Vertical-Line Test

Use the vertical-line test. Which graph(s) represent functions?

a.)

b.)

c.)
Graphing Functions

An *equation in two variables* can represent many functions.

Graphing Equations in Two Variables
1. Make a table of values, and write the ordered pairs.
2. Plot enough solutions to recognize a pattern.
3. Connect the points with a line or curve.

Example 4: Graphing an Equation
Graph $y = x + 1$ by using a table of values.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph of $y = x + 1$]